Current graph representation learning techniques use Graph Neural Networks (GNNs) to extract features from dataset embeddings. In this work, we examine the quality of these embeddings and assess how changing them can affect the accuracy of GNNs. We explore different embedding extraction techniques for both images and texts; and find that the performance of different GNN architectures is dependent on the embedding style used. We see a prevalence of bag of words (BoW) embeddings and text classification tasks in available graph datasets. Given the impact embeddings has on GNN performance. this leads to a phenomenon that GNNs being optimised for BoW vectors.
翻译:当前图表教学技术使用图形神经网络(GNN)从数据集嵌入中提取特征。 在这项工作中,我们检查这些嵌入的质量,评估这些嵌入如何影响GNN的准确性。我们探索图像和文本的不同嵌入提取技术;发现不同的GNN结构的性能取决于所使用的嵌入风格。我们看到现有图表数据集中一袋文字(BoW)嵌入和文本分类任务非常普遍。鉴于嵌入对GNN的性能产生的影响,这导致GNN对 BoW矢量的优化。