In node classification tasks, graph convolutional neural networks (GCNs) have demonstrated competitive performance over traditional methods on diverse graph data. However, it is known that the performance of GCNs degrades with increasing number of layers (oversmoothing problem) and recent studies have also shown that GCNs may perform worse in heterophilous graphs, where neighboring nodes tend to belong to different classes (heterophily problem). These two problems are usually viewed as unrelated, and thus are studied independently, often at the graph filter level from a spectral perspective. We are the first to take a unified perspective to jointly explain the oversmoothing and heterophily problems at the node level. Specifically, we profile the nodes via two quantitative metrics: the relative degree of a node (compared to its neighbors) and the node-level heterophily. Our theory shows that the interplay of these two profiling metrics defines three cases of node behaviors, which explain the oversmoothing and heterophily problems jointly and can predict the performance of GCNs. Based on insights from our theory, we show theoretically and empirically the effectiveness of two strategies: structure-based edge correction, which learns corrected edge weights from structural properties (i.e., degrees), and feature-based edge correction, which learns signed edge weights from node features. Compared to other approaches, which tend to handle well either heterophily or oversmoothing, we show that {our model, GGCN}, which incorporates the two strategies performs well in both problems.
翻译:在节点分类任务中,图形进化神经网络(GCNs)显示了与不同图表数据的传统方法相比的竞争性性能。然而,众所周知,GCN的性能随着层层数的增加(过度悬浮问题)而退化,而最近的研究也显示,GCN在异性嗜血性图形中的表现可能更差,即相邻节点往往属于不同类别(喜剧问题) 。这两个问题通常被视为不相干,因此是独立研究的,常常从光谱角度在图形过滤层中进行。我们首先采取统一的观点,在节点一级共同解释过度悬浮和杂乱问题。具体地说,我们通过两个定量指标来描述节点:节点的相对程度(与其邻居相比)和节点水平。我们的理论表明,这两个特征的相互作用定义了三个基于节点的行为案例,这解释了过度悬浮和杂乱乱乱乱乱乱乱乱乱乱乱乱乱乱乱乱乱。我们第一个采取统一的观点,可以共同解释GCN在节点层面共同解释性层面共同解释其表现。我们从理论的边缘到结构上的边缘分析,我们从结构上的分变的分变,我们从结构上的分变,从结构结构的分变的分变,从结构学到分变的分化,我们从结构学的分化的分化的分,我们从结构的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化和分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化,我们的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分化的分