The extensive deployment of probabilistic algorithms has radically changed our perspective on several well-established computational notions. Correctness is probably the most basic one. While a typical probabilistic program cannot be said to compute the correct result, we often have quite strong expectations about the frequency with which it should return certain outputs. In these cases, trust as a generalisation of correctness fares better. One way to understand it is to say that a probabilistic computational process is trustworthy if the frequency of its outputs is compliant with a probability distribution which models its expected behaviour. We present a formal computational framework that formalises this idea. In order to do so, we define a typed lambda-calculus that features operators for conducting experiments at runtime on probabilistic programs and for evaluating whether they compute outputs as determined by a target probability distribution. After proving some fundamental computational properties of the calculus, such as progress and termination, we define a static notion of confidence that allows to prove that our notion of trust behaves correctly with respect to the basic tenets of probability theory.


翻译:广泛运用概率算法从根本上改变了我们对几个公认的计算概念的看法。 正确性可能是最基本的。 虽然一个典型的概率性程序不能算出正确的结果, 但我们往往对它应该返回某些产出的频率抱有很高的期望。 在这些情况下, 信任作为正确性的概括性效果更好。 一种理解的方法是说, 概率性计算过程是可靠的, 如果其产出的频率符合一个概率分布, 而该概率分布是其预期行为的模型。 我们提出了一个正式的计算框架, 从而将这个概念正规化。 为了做到这一点, 我们定义了一种型式的羊羔- 计算法, 由操作者在运行时进行概率性程序实验, 并用来评价它们是否按照目标概率分布来计算产出。 在验证了微积分的某些基本计算特性, 如进度和终止后, 我们定义了一个静态的信任概念, 从而能够证明我们的信任概念在概率理论的基本原理上是正确的。

0
下载
关闭预览

相关内容

Beginner's All-purpose Symbolic Instruction Code(初学者通用的符号指令代码),刚开始被作者写做 BASIC,后来被微软广泛地叫做 Basic 。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员