Interference between overlapping gird patterns creates moire patterns, degrading the visual quality of an image that captures a screen of a digital display device by an ordinary digital camera. Removing such moire patterns is challenging due to their complex patterns of diverse sizes and color distortions. Existing approaches mainly focus on filtering out in the spatial domain, failing to remove a large-scale moire pattern. In this paper, we propose a novel model called FPANet that learns filters in both frequency and spatial domains, improving the restoration quality by removing various sizes of moire patterns. To further enhance, our model takes multiple consecutive frames, learning to extract frame-invariant content features and outputting better quality temporally consistent images. We demonstrate the effectiveness of our proposed method with a publicly available large-scale dataset, observing that ours outperforms the state-of-the-art approaches, including ESDNet, VDmoire, MBCNN, WDNet, UNet, and DMCNN, in terms of the image and video quality metrics, such as PSNR, SSIM, LPIPS, FVD, and FSIM.
翻译:相重叠的刺状图案之间的干扰产生了摩尔图案,降低了通过普通数字相机捕捉数字显示装置屏幕的图像的视觉质量。 消除这种摩尔图案具有挑战性,因为它们具有不同大小和颜色扭曲的复杂模式。 现有办法主要侧重于在空间领域过滤,未能消除大规模摩尔图案。 在本文中,我们提出了一个名为FPANet的新模式,在频率和空间领域学习过滤器,通过消除摩尔图案的不同尺寸提高恢复质量。 为了进一步加强,我们的模型采用多个连续框架,学习提取框架变量内容特征,并产出质量更高且与时间一致的图像。 我们用公开的大型数据集展示了我们拟议方法的有效性,我们观察到,从图像和视频质量指标上看,包括PSNR、SSIM、LPIPS、FVD和FSIM, 我们观察到,我们的拟议方法在图像和视频质量指标方面,包括ESDNet、Vmoire、MBCNN、WDNet、UNet和DCNN。