Neural networks have been used for channel decoding, channel detection, channel evaluation, and resource management in multi-input and multi-output (MIMO) wireless communication systems. In this paper, we consider the problem of finding a precoding matrix with high spectral efficiency (SE) using a variational autoencoder. There is an optimization procedure for finding optimal precoding matrices. Our goal is to build a less time-consuming algorithm with minimal loss of quality from the optimal one. As a solution to achieve this goal, we used two types of variational autoencoders to build precoding matrices: the classical variational autoencoder (VAE) and the conditional variational autoencoder (CVAE). Both methods can be used to study a wide range of optimal precoding matrices. The VAE and CVAE methods allow restoring the distribution of the predicted value by sampling random variables from the normal distribution at the intermediate stage of calculations. The construction of precoding matrices and their distribution for the SE objective function using VAE and CVAE methods is described in the literature for the first time.
翻译:在多投入和多输出(MIMO)无线通信系统中,利用神经网络进行频道解码、频道探测、频道评估、频道评估和资源管理。在本文中,我们考虑了使用变式自动编码器找到高光谱效率的预编码矩阵的问题。有一个最优化程序可以找到最佳的预编码矩阵。我们的目标是建立一个较不费时的算法,从最佳算法的质量上损失最小。为了实现这一目标,我们使用了两种变式自动编码器来建立预编码矩阵:古典变式自动编码器(VAE)和有条件的变式自动编码器(CVAE)。两种方法都可以用来研究广泛的最佳预编码矩阵。 VAE 和 CVAE 方法可以恢复预测值的分布,通过在计算中间阶段对正常分布的随机变量进行取样。文献首次介绍了预先编码矩阵的构造及其使用VAE和CVAE方法用于SE目标功能的分布。