Drawing (a multiset of) coloured balls from an urn is one of the most basic models in discrete probability theory. Three modes of drawing are commonly distinguished: multinomial (draw-replace), hypergeometric (draw-delete), and Polya (draw-add). These drawing operations are represented as maps from urns to distributions over multisets of draws. The set of urns is a metric space via the Kantorovich distance. The set of distributions over draws is also a metric space, using Kantorovich-over-Kantorovich. It is shown that these three draw operations are all isometries, that is, they exactly preserve the Kantorovich distances. Further, drawing is studied in the limit, both for large urns and for large draws. First it is shown that, as the urn size increases, the Kantorovich distances go to zero between hypergeometric and multinomial draws, and also between P\'olya and multinomial draws. Second, it is shown that, as the drawsize increases, the Kantorovich distance goes to zero (in probability) between an urn and (normalised) multinomial draws from the urn. These results are known, but here, they are formulated in a novel metric manner as limits of Kantorovich distances. We call these two limit results the law of large urns and the law of large draws.


翻译:暂无翻译

0
下载
关闭预览

相关内容

在数学中,多重集是对集的概念的修改,与集不同,集对每个元素允许多个实例。 为每个元素提供的实例的正整数个数称为该元素在多重集中的多重性。 结果存在无限多个多重集,它们仅包含元素a和b,但因元素的多样性而变化:(1)集{a,b}仅包含元素a和b,当将{a,b}视为多集时,每个元素的多重性为1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月21日
Arxiv
0+阅读 · 11月20日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月15日
Arxiv
11+阅读 · 2023年3月8日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 11月21日
Arxiv
0+阅读 · 11月20日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月15日
Arxiv
11+阅读 · 2023年3月8日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员