This study aims to investigate the effects of including patients' clinical information on the performance of deep learning (DL) classifiers for disease location in chest X-ray images. Although current classifiers achieve high performance using chest X-ray images alone, our interviews with radiologists indicate that clinical data is highly informative and essential for interpreting images and making proper diagnoses. In this work, we propose a novel architecture consisting of two fusion methods that enable the model to simultaneously process patients' clinical data (structured data) and chest X-rays (image data). Since these data modalities are in different dimensional spaces, we propose a spatial arrangement strategy, termed spatialization, to facilitate the multimodal learning process in a Mask R-CNN model. We performed an extensive experimental evaluation comprising three datasets with different modalities: MIMIC CXR (chest X-ray images), MIMIC IV-ED (patients' clinical data), and REFLACX (annotations of disease locations in chest X-rays). Results show that incorporating patients' clinical data in a DL model together with the proposed fusion methods improves the performance of disease localization in chest X-rays by 12\% in terms of Average Precision compared to a standard Mask R-CNN using only chest X-rays. Further ablation studies also emphasize the importance of multimodal DL architectures and the incorporation of patients' clinical data in disease localisation. The architecture proposed in this work is publicly available to promote the scientific reproducibility of our study (https://github.com/ChihchengHsieh/multimodal-abnormalities-detection).
翻译:这项研究旨在调查将病人的临床信息纳入胸前X射线图像中疾病定位的深度学习(DL)分类器的绩效的临床信息的影响。虽然目前的分类器仅使用胸前X射线图像就能取得高性能,但我们与放射学家的访谈表明,临床数据信息信息信息丰富,对于解读图像和进行正确诊断至关重要。在这项工作中,我们提出了一个由两种混合方法组成的新结构,使模型能够同时处理病人的临床数据(结构数据)和胸前X射线(模拟数据)。由于这些数据模式位于不同的空间空间,我们提议了一项空间安排战略,称为空间化,以促进Make R-CNN模型中的多式联运学习进程。我们进行了广泛的实验性评估,包括三种不同模式的数据集:MIMIC CXR(切X射线图像)、MIMICIV-ED(病人临床数据)和REFLACX(疾病地点在胸前X射线上的认知),结果显示,将病人的临床数据数据纳入DLT模型中,以及拟议的合并方法称为空间化,以便利MAR-CNN模型的多式学习过程结构中,也提高了X-Ralalalalmaisal化的成绩研究的重要性。</s>