Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. For the OhioT1DM dataset, containing eight weeks' data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH), respectively. To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings - the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
翻译:血糖(BG)管理对于1型糖尿病患者至关重要,这导致需要可靠的人工胰腺素或胰岛素注射系统。近年来,深层学习技术被用于更精确的BG水平预测系统。然而,连续的葡萄糖监测(CGM)读数容易发生感应错误。因此,不准确的CGM读数会影响BG预测并使其不可靠,即使使用了最优化的机器学习模型。在这项工作中,我们建议采用新颖的方法来预测血糖水平,同时使用堆叠的短期内存(LSTM)基于深层中心血管网络(RNNNN)模型(RNNN)来预测血浆水平。我们使用卡尔曼平滑技术来纠正感官错误的不准确的CGM读数。对于含有来自6个不同病人的8周数据的OHOHT1DM数据集,我们的平均RME值为6.45和17.24 mg/dl, 平均为30分钟和60分钟的预测轨道方法(PH)。我们最了解的是,这是从OGM1数据中测算数据中测算的C的C结果的平均预测精度,这是从CMGMDMD数据中的一种平均预测, 数据中所使用的C。在CMDMDMDMD值数据中, 的计算中, 可能使用。