Tasks like image reconstruction in computer vision, matrix completion in recommender systems and link prediction in graph theory, are well studied in machine learning literature. In this work, we apply a denoising autoencoder-based neural network architecture to the task of completing partial multiplication (Cayley) tables of finite semigroups. We suggest a novel loss function for that task based on the algebraic nature of the semigroup data. We also provide a software package for conducting experiments similar to those carried out in this work. Our experiments showed that with only about 10% of the available data, it is possible to build a model capable of reconstructing a full Cayley from only half of it in about 80% of cases.
翻译:计算机图像重建、 推荐者系统中的矩阵完成和图表理论中的链接预测等任务,在机器学习文献中都得到了很好的研究。 在这项工作中,我们应用一个以自动编码器为基础的神经网络架构来完成部分倍增( Cayley) 有限半组表的任务。 我们建议根据半组数据的代数性质为这项任务设定新的损失功能。 我们还为进行类似这项工作中进行的实验提供了软件包。 我们的实验显示,只有大约10%的现有数据,就有可能建立一个模型,能够从大约80%的案例中只从其中的一半中重建完整的Cayley。