Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To alleviate the need for expensive parallel corpora by TLM, in this work, we incorporate the translation information from dictionaries into the pretraining process and propose a novel Bilingual Dictionary-based Language Model (BDLM). We evaluate our BDLM in Chinese, English, and Romanian. For Chinese-English, we obtained a 55.0 BLEU on WMT-News19 (Tiedemann, 2012) and a 24.3 BLEU on WMT20 news-commentary, outperforming the Vanilla Transformer (Vaswani et al., 2017) by more than 8.4 BLEU and 2.3 BLEU, respectively. According to our results, the BDLM also has advantages on convergence speed and predicting rare words. The increase in BLEU for WMT16 Romanian-English also shows its effectiveness in low-resources language translation.
翻译:最近的研究显示,通过采用跨语言语言模式的预培训(Lample和Conneau,2019年),特别是翻译语言模型(TLM),神经机机翻译的性能取得了明显改善。为了减轻TLM在这项工作中对昂贵的平行公司平行公司的需求,我们将词典的翻译信息纳入预培训过程,并提出了以双语词典为基础的新语言模型(BDLM)。我们用中文、英文和罗马尼亚文评价了我们的BDLM BDLM。对于中文英语,我们在WMT-News19(Tiedemann,2012年)上获得了55.0 BLEU,在WMT20新闻公告上获得了24.3 BLEU,比Vanilla变形器(Vaswani等人,2017年)分别提高了8.4 BLEU和2.3 BLEU。根据我们的结果,BDLM在趋同速度和预测稀有文字方面也有优势。WMT16罗马尼亚文的BLEU的增加也显示了其低资源语言翻译的效用。