Two contrasting algorithmic paradigms for constraint satisfaction problems are successive local explorations of neighboring configurations versus producing new configurations using global information about the problem (e.g. approximating the marginals of the probability distribution which is uniform over satisfying configurations). This paper presents new algorithms for the latter framework, ultimately producing estimates for satisfying configurations using methods from Boolean Fourier analysis. The approach is broadly inspired by the quantum amplitude amplification algorithm in that it maximally increases the amplitude of the approximation function over satisfying configurations given sequential refinements. We demonstrate that satisfying solutions may be retrieved in a process analogous to quantum measurement made efficient by sparsity in the Fourier domain, and present a complete solver construction using this novel approximation. Freedom in the refinement strategy invites further opportunities to design solvers in an evolutionary computing framework. Results demonstrate competitive performance against local solvers for the Boolean satisfiability (SAT) problem, encouraging future work in understanding the connections between Boolean Fourier analysis and constraint satisfaction.
翻译:限制满意度问题的两个对比性算法范式是相继对近距离配置进行本地探索,而利用全球问题信息生成新的配置(例如,接近与满意度配置一致的概率分布边缘),本文为后一个框架提出了新的算法,最终利用Boolean Fourier分析的方法为满意度配置作出估计。这个方法广泛受量量量增殖算法的启发,因为它最大限度地提高了近距离功能相对于满足度配置的振幅。我们证明,满足性解决方案可以在类似于通过四流域的宽度测量而实现的量量度测量的进程中检索,并用这种新的近似来展示完整的求解器构造。 精细战略中的自由性为设计进化计算框架的求解者提供了更多的机会。 结果表明,与布利安卫星卫星卫星卫星卫星问题当地解算器相比,其竞争性性表现表现在鼓励未来工作理解布利安四流分析与约束度抵度之间的联系。