Stein Variational Gradient Descent~(\algname{SVGD}) is a popular sampling algorithm used in various machine learning tasks. It is well known that \algname{SVGD} arises from a discretization of the kernelized gradient flow of the Kullback-Leibler divergence $D_{KL}\left(\cdot\mid\pi\right)$, where $\pi$ is the target distribution. In this work, we propose to enhance \algname{SVGD} via the introduction of {\em importance weights}, which leads to a new method for which we coin the name \algname{$\beta$-SVGD}. In the continuous time and infinite particles regime, the time for this flow to converge to the equilibrium distribution $\pi$, quantified by the Stein Fisher information, depends on $\rho_0$ and $\pi$ very weakly. This is very different from the kernelized gradient flow of Kullback-Leibler divergence, whose time complexity depends on $D_{KL}\left(\rho_0\mid\pi\right)$. Under certain assumptions, we provide a descent lemma for the population limit \algname{$\beta$-SVGD}, which covers the descent lemma for the population limit \algname{SVGD} when $\beta\to 0$. We also illustrate the advantages of \algname{$\beta$-SVGD} over \algname{SVGD} by simple experiments.
翻译:Stein Variational 梯度源值~ (\\ gname{SVGD}) 是用于各种机器学习任务的一种流行的取样算法 。 众所周知, \ algname{ SVGD} 来源于 Kullback- Leibler 差异内分层梯度流的分解 $D\ kL ⁇ leff(\ cdot\ mid\ pi\right) 美元是目标分布的 。 在此工作中, 我们提议通过引入 {em 重要性重量} 来增强 \ algname{SVGD} 。 这导致一种新的方法, 我们为此命名 =algname{$\ beta$\ b$ - SVGD} 。 在持续的时间和无限的粒子系统中, 该流时间流到均衡分布 $\ pion$\ pion\ pion\ pion\ pieflex, 取决于 $rho_ $ 美元和 $\ g_ g_ leg_ leg_ leg_ leg_ leg_ leg_ leg_ leg_ suder sub lab sub laismismismis exmismismismismismismismisl) exm ex exmism exm exm exm exm exm exmismismismismismismismism exmt exmt 。