Text-based dialogues are now widely used to solve real-world problems. In cases where solution strategies are already known, they can sometimes be codified into workflows and used to guide humans or artificial agents through the task of helping clients. We are interested in the situation where a formal workflow may not yet exist, but we wish to discover the steps of actions that have been taken to resolve problems. We examine a novel transformer-based approach for this situation and we present experiments where we summarize dialogues in the Action-Based Conversations Dataset (ABCD) with workflows. Since the ABCD dialogues were generated using known workflows to guide agents we can evaluate our ability to extract such workflows using ground truth sequences of action steps, organized as workflows. We propose and evaluate an approach that conditions models on the set of allowable action steps and we show that using this strategy we can improve workflow discovery (WD) performance. Our conditioning approach also improves zero-shot and few-shot WD performance when transferring learned models to entirely new domains (i.e. the MultiWOZ setting). Further, a modified variant of our architecture achieves state-of-the-art performance on the related but different problems of Action State Tracking (AST) and Cascading Dialogue Success (CDS) on the ABCD.
翻译:现在,基于文本的对话被广泛用于解决现实世界的问题。在已经知道解决方案战略的情况下,有时可以将其编纂成工作流程,并用于指导人类或人工代理人员完成帮助客户的任务。我们感兴趣的是正式工作流程可能尚不存在的情况,但我们希望发现为解决问题而已经采取的行动步骤。我们为这种情况研究一种新的基于变压器的方法,并且我们提出实验,让我们在基于行动的对话数据集(ABCD)和工作流程中总结对话。由于创建ABCD对话时使用了已知的工作流程来指导代理人,因此我们可以利用实地真相序列的行动步骤来评估我们利用这些工作流程的能力。我们建议和评价一种方法,即为一套可允许的行动步骤创造条件,我们表明利用这一战略,我们可以改进工作流程的发现(WD)性能。我们的调节方法还改进了在将学习模型转移到全新的领域(即多WOZ设置)时的零点和几分数的WD表现。此外,我们架构的修改变式可以实现州-CD动态序列(AST-C-C-C-C-C-C-C-Adustrustryinging A-C-C-DSLA-C-C-C-C-C-Trustal-Tast-DADAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-Tast-C-C-C-C-C-C-C-C-C-C-C-C-Tast-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-TAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-TAR-C-C-C-C-C-C-TAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C