Model compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving setting, which is considered in this work. It was shown in the paper that the sensitivity of compressed models to different distortion types is nuanced, and some of the corruptions are heavily impacted by the compression methods (i.e., additive noise), while others (blur effect) are only slightly affected. A common way to improve the robustness of models is to use data augmentation, which was confirmed to positively affect models' robustness, also for highly compressed models. It was further shown that while data imbalance methods brought only a slight increase in accuracy for the baseline model (without compression), the impact was more striking at higher compression rates for the structured pruning. Finally, methods for handling data imbalance brought a significant improvement of the pruned models' worst-detected class accuracy.


翻译:模型压缩技术可以大大减少与深神经网络数据处理有关的计算成本,平均精确度仅略微下降。同时,模型规模的缩小可能对噪音案例或属于较不常见类别的物体产生很大影响。从模型安全的角度来说,这是一个关键问题,特别是在自动驾驶环境中的物体探测方面,这是这项工作中考虑的问题。文件表明,压缩模型对不同扭曲类型的敏感度是细微的,有些腐败受到压缩方法(即添加噪音)的严重影响,而其他(布尔效应)则受到轻微影响。提高模型强度的一个常见办法是使用数据增强,经证实,这对模型的稳健性也有积极影响,对于高度压缩的模型也是如此。还进一步表明,虽然数据不平衡方法只使基线模型的准确性略有提高(没有压缩),但对于结构化的修剪剪的压缩率则更为明显。最后,处理数据不平衡的方法大大改进了编织模型最差的分类准确性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年7月30日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员