The mathematical approaches for modeling dynamic traffic can roughly be divided into two categories: discrete packet routing models and continuous flow over time models. Despite very vital research activities on models in both categories, the connection between these approaches was poorly understood so far. In this work we build this connection by specifying a (competitive) packet routing model, which is discrete in terms of flow and time, and by proving its convergence to the intensively studied model of flows over time with deterministic queuing. More precisely, we prove that the limit of the convergence process, when decreasing the packet size and time step length in the packet routing model, constitutes a flow over time with multiple commodities. In addition, we show that the convergence result implies the existence of approximate equilibria in the competitive version of the packet routing model. This is of significant interest as exact pure Nash equilibria, similar to almost all other competitive models, cannot be guaranteed in the multi-commodity setting. Moreover, the introduced packet routing model with deterministic queuing is very application-oriented as it is based on the network loading module of the agent-based transport simulation MATSim. As the present work is the first mathematical formalization of this simulation, it provides a theoretical foundation and an environment for provable mathematical statements for MATSim.


翻译:建模动态交通模式的数学方法大致可以分为两类:离散包路由模型和随时间变化的连续流动模型。尽管对两种类型的模型都进行了非常重要的研究活动,但迄今为止对这些方法之间的联系了解甚少。在这项工作中,我们通过具体说明一个(竞争性)包路由模型来建立这一联系,该模型在流量和时间方面是独立的,并且证明它与经过密集研究的流流模式的趋同,同时有确定性排队。更确切地说,我们证明,当减少包路由模型的包件大小和时间长度时序流时,趋同过程的局限性是随时间流而流的。此外,我们表明,这种趋同结果意味着在包路由模型的竞争版本中存在近乎的平衡。这具有重大意义,因为与几乎所有其他竞争性模型相似的纯净Nash equiliconlibricrial,在多商品环境下是无法保证的。此外,采用确定性排入式汇模式的引入的包路由模型模型的极限是非常注重应用的,因为它以多种商品路由多种商品组成的网络装载模式为基础。此外,这个基于模型的数学模型的模型的模型的模型基础是用于目前的数学模拟环境。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年7月16日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员