Ensemble forecast post-processing is a necessary step in producing accurate probabilistic forecasts. Conventional post-processing methods operate by estimating the parameters of a parametric distribution, frequently on a per-location or per-lead-time basis. We propose a novel, neural network-based method, which produces forecasts for all locations and lead times, jointly. To relax the distributional assumption of many post-processing methods, our approach incorporates normalizing flows as flexible parametric distribution estimators. This enables us to model varying forecast distributions in a mathematically exact way. We demonstrate the effectiveness of our method in the context of the EUPPBench benchmark, where we conduct temperature forecast post-processing for stations in a sub-region of western Europe. We show that our novel method exhibits state-of-the-art performance on the benchmark, outclassing our previous, well-performing entry. Additionally, by providing a detailed comparison of three variants of our novel post-processing method, we elucidate the reasons why our method outperforms per-lead-time-based approaches and approaches with distributional assumptions.
翻译:集合预报后处理是产生准确概率预报的必要步骤。传统的后处理方法是在每个位置或每个引导时间基础上估计参数,但这种方法的前提假设是检验性的。我们提出了一种新颖的基于神经网络的方法,通过关键的改进为所有位置和引导时间联合生成预报。为了放宽许多后处理方法的分布假设,我们的方法采用了归一化流作为灵活的参数分布估计器。这使我们能够以数学上准确的方式建模不同的预报分布。我们在EUPPBench基准测试中展示了我们方法的有效性,该基准测试是在西欧一个子区域的站点进行温度预报后处理。我们展示了我们的新颖方法在基准测试中表现出了最先进的性能,超过了我们之前表现良好的参赛作品。此外,通过提供我们新的后处理方法的三种变体的详细比较,我们阐明了我们的方法为什么优于基于引导时间、充满分布假设的方法的原因。