Educational technologies nowadays increasingly use data and Machine Learning (ML) models. This gives the students, instructors, and administrators support and insights for the optimum policy. However, it is well acknowledged that ML models are subject to bias, which raises concerns about the fairness, bias, and discrimination of using these automated ML algorithms in education and its unintended and unforeseen negative consequences. The contribution of bias during the decision-making comes from datasets used for training ML models and the model architecture. This paper presents a preliminary investigation of the fairness of transformer neural networks on the two tabular datasets: Law School and Student-Mathematics. In contrast to classical ML models, the transformer-based models transform these tabular datasets into a richer representation while solving the classification task. We use different fairness metrics for evaluation and check the trade-off between fairness and accuracy of the transformer-based models over the tabular datasets. Empirically, our approach shows impressive results regarding the trade-off between fairness and performance on the Law School dataset.


翻译:目前,教育技术越来越多地使用数据和机器学习模式。这为学生、教官和行政人员提供了最佳政策的支持和见解。然而,人们公认,ML模式受到偏见的影响,这引起了人们对在教育中使用这些自动ML算法的公平、偏见和歧视及其意外和意外的负面后果的关切。在决策过程中,偏见的推波助澜来自用于培训ML模型和模型结构的数据集。本文件对两个表格数据集(法学院和学生数学)变异神经网络的公平性进行了初步调查。与传统的ML模型不同,基于变异器的模型将这些表格数据集转换成更富的代表性,同时解决分类任务。我们使用不同的公平性衡量标准进行评估,并检查基于变异模型在表格数据集上的公平和准确性之间的权衡。我们的方法很生动地表明,在法学院数据集的公平与业绩之间的权衡方面,取得了令人印象深刻的结果。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
13+阅读 · 2022年1月20日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员