Renewable energy is critical for combating climate change, whose first step is the storage of electricity generated from renewable energy sources. Li-ion batteries are a popular kind of storage units. Their continuous usage through charge-discharge cycles eventually leads to degradation. This can be visualized in plotting voltage discharge curves (VDCs) over discharge cycles. Studies of battery degradation have mostly concentrated on modeling degradation through one scalar measurement summarizing each VDC. Such simplification of curves can lead to inaccurate predictive models. Here we analyze the degradation of rechargeable Li-ion batteries from a NASA data set through modeling and predicting their full VDCs. With techniques from longitudinal and functional data analysis, we propose a new two-step predictive modeling procedure for functional responses residing on heterogeneous domains. We first predict the shapes and domain end points of VDCs using functional regression models. Then we integrate these predictions to perform a degradation analysis. Our approach is fully functional, allows the incorporation of usage information, produces predictions in a curve form, and thus provides flexibility in the assessment of battery degradation. Through extensive simulation studies and cross-validated data analysis, our approach demonstrates better prediction than the existing approach of modeling degradation directly with aggregated data.
翻译:可再生能源是应对气候变化的关键,其第一步是储存可再生能源产生的电力。利离电池是一种受欢迎的储存装置。通过充电放电周期持续使用电池最终会导致退化。这可以通过绘制排电周期的电压排流曲线(VDCs)进行可视化分析。电池退化研究主要集中于通过对每个VDC进行一个缩放测量来模拟降解。这种曲线的简化可以导致不准确的预测模型。我们在这里分析美国航天局数据集中可充电的利离电池的退化情况,通过建模和预测其全部VDCs。通过纵向和功能性数据分析的技术,我们提出一个新的两步预测模型程序,用于不同领域的功能反应。我们首先利用功能回归模型预测VDC的形状和领域端点。然后,我们将这些预测结合起来进行退化分析。我们的方法是完全实用的,能够纳入使用信息,以曲线形式作出预测,从而在评估电池退化方面提供灵活性。通过广泛的模拟研究和交叉对比的数据分析,我们的方法比现有的数据降解方法更能直接地显示。