Self-supervised speech models learn representations that capture both content and speaker information. Yet this entanglement creates problems: content tasks suffer from speaker bias, and privacy concerns arise when speaker identity leaks through supposedly anonymized representations. We present two contributions to address these challenges. First, we develop InterpTRQE-SptME (Timbre Residual Quantitative Evaluation Benchmark of Speech pre-training Models Encoding via Interpretability), a benchmark that directly measures residual speaker information in content embeddings using SHAP-based interpretability analysis. Unlike existing indirect metrics, our approach quantifies the exact proportion of speaker information remaining after disentanglement. Second, we propose InterpTF-SptME, which uses these interpretability insights to filter speaker information from embeddings. Testing on VCTK with seven models including HuBERT, WavLM, and ContentVec, we find that SHAP Noise filtering reduces speaker residuals from 18.05% to nearly zero while maintaining recognition accuracy (CTC loss increase under 1%). The method is model-agnostic and requires no retraining.
翻译:暂无翻译