Self-supervised speech models learn representations that capture both content and speaker information. Yet this entanglement creates problems: content tasks suffer from speaker bias, and privacy concerns arise when speaker identity leaks through supposedly anonymized representations. We present two contributions to address these challenges. First, we develop InterpTRQE-SptME (Timbre Residual Quantitative Evaluation Benchmark of Speech pre-training Models Encoding via Interpretability), a benchmark that directly measures residual speaker information in content embeddings using SHAP-based interpretability analysis. Unlike existing indirect metrics, our approach quantifies the exact proportion of speaker information remaining after disentanglement. Second, we propose InterpTF-SptME, which uses these interpretability insights to filter speaker information from embeddings. Testing on VCTK with seven models including HuBERT, WavLM, and ContentVec, we find that SHAP Noise filtering reduces speaker residuals from 18.05% to nearly zero while maintaining recognition accuracy (CTC loss increase under 1%). The method is model-agnostic and requires no retraining.


翻译:自监督语音模型学习到的表征同时编码了内容信息与说话人信息。然而,这种信息纠缠会引发问题:内容任务易受说话人偏差影响,且当说话人身份通过本应匿名的表征泄露时,会引发隐私担忧。本文提出两项贡献以应对这些挑战。首先,我们构建了InterpTRQE-SptME(基于可解释性的语音预训练模型编码音色残差量化评估基准),该基准利用基于SHAP的可解释性分析,直接度量内容嵌入中残留的说话人信息。与现有间接评估指标不同,我们的方法能够量化解耦后残留说话人信息的精确比例。其次,我们提出InterpTF-SptME方法,利用可解释性分析结果从嵌入中过滤说话人信息。通过在VCTK数据集上对包括HuBERT、WavLM和ContentVec在内的七个模型进行测试,我们发现SHAP噪声过滤能将说话人残差从18.05%降至接近零,同时保持识别准确率(CTC损失增长低于1%)。该方法具有模型无关性,且无需重新训练。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员