A variety of explanation methods have been proposed in recent years to help users gain insights into the results returned by neural networks, which are otherwise complex and opaque black-boxes. However, explanations give rise to potential side-channels that can be leveraged by an adversary for mounting attacks on the system. In particular, post-hoc explanation methods that highlight input dimensions according to their importance or relevance to the result also leak information that weakens security and privacy. In this work, we perform the first systematic characterization of the privacy and security risks arising from various popular explanation techniques. First, we propose novel explanation-guided black-box evasion attacks that lead to 10 times reduction in query count for the same success rate. We show that the adversarial advantage from explanations can be quantified as a reduction in the total variance of the estimated gradient. Second, we revisit the membership information leaked by common explanations. Contrary to observations in prior studies, via our modified attacks we show significant leakage of membership information (above 100% improvement over prior results), even in a much stricter black-box setting. Finally, we study explanation-guided model extraction attacks and demonstrate adversarial gains through a large reduction in query count.


翻译:近年来提出了各种解释方法,以帮助用户深入了解神经网络(这些网络本来是复杂和不透明的黑盒)所返回的结果;然而,解释产生了潜在的侧道,对手可以利用这些侧道来发动攻击系统。特别是,根据输入的重要性或对结果的相关性来强调输入层面的热后解释方法,还泄漏了削弱安全和隐私的信息。在这项工作中,我们对各种大众解释技术产生的隐私和安全风险进行了首次系统描述。首先,我们提出了新颖的解释性黑盒规避攻击,导致相同成功率的查询数减少10倍。我们表明,解释的对抗性优势可以量化为估计梯度总差异的减少。第二,我们重新审视由共同解释泄露的会籍信息。与先前研究中的意见相反,我们通过修改的攻击,我们发现会籍信息大量泄漏(比以前的结果改进了100%),甚至在更加严格的黑盒设置中也是如此。最后,我们研究了解释性驱逐模式攻击的模型,并通过大幅削减计数来显示对抗性收益。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员