Person Re-identification (Person ReID) is an important topic in intelligent surveillance and computer vision. It aims to accurately measure visual similarities between person images for determining whether two images correspond to the same person. The key to accurately measure visual similarities is learning discriminative features, which not only captures clues from different spatial scales, but also jointly inferences on multiple scales, with the ability to determine reliability and ID-relativity of each clue. To achieve these goals, we propose to improve Person ReID system performance from two perspective: \textbf{1).} Multi-scale feature learning (MSFL), which consists of Cross-scale information propagation (CSIP) and Multi-scale feature fusion (MSFF), to dynamically fuse features cross different scales.\textbf{2).} Multi-scale gradient regularizor (MSGR), to emphasize ID-related factors and ignore irrelevant factors in an adversarial manner. Combining MSFL and MSGR, our method achieves the state-of-the-art performance on four commonly used person-ReID datasets with neglectable test-time computation overhead.


翻译:个人再识别(Person ReID)是智能监控和计算机视觉中的一个重要专题,目的是准确地测量个人图像之间的视觉相似性,以确定两种图像是否与同一人相适应。准确测量视觉相似性的关键是学习区别性特征,这不仅能捕捉不同空间尺度的线索,而且还能在多个尺度上共同推断,能够确定每个线索的可靠性和身份相对性。为了实现这些目标,我们提议从两个角度提高个人再识别系统绩效:\textb{1}多尺度特征学习(MSFL),其中包括跨尺度信息传播和多尺度特征聚合(MSFF),以动态的引信特征跨不同尺度。\textbf{2}多尺度梯度常规(MSGR),以强调与身份有关的各种因素并以对抗方式忽略不相关因素。为了实现这些目标,我们的方法将MSFLL和MSGR结合起来,在四种常用个人再识别数据集和可忽略测试时间计算间接费用方面实现了最新业绩。

0
下载
关闭预览

相关内容

在机器学习中,表征学习或表示学习是允许系统从原始数据中自动发现特征检测或分类所需的表示的一组技术。这取代了手动特征工程,并允许机器学习特征并使用它们执行特定任务。在有监督的表征学习中,使用标记的输入数据来学习特征,包括监督神经网络,多层感知器和(监督)字典学习。在无监督表征学习中,特征是与未标记的输入数据一起学习的,包括字典学习,独立成分分析,自动编码器,矩阵分解和各种形式的聚类。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Metric Attack for Person Re-identification
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员