In this report, we present the 1st place solution for ICCV 2023 OmniObject3D Challenge: Sparse-View Reconstruction. The challenge aims to evaluate approaches for novel view synthesis and surface reconstruction using only a few posed images of each object. We utilize Pixel-NeRF as the basic model, and apply depth supervision as well as coarse-to-fine positional encoding. The experiments demonstrate the effectiveness of our approach in improving sparse-view reconstruction quality. We ranked first in the final test with a PSNR of 25.44614.
翻译:暂无翻译