AI legal assistants based on Large Language Models (LLMs) can provide accessible legal consulting services, but the hallucination problem poses potential legal risks. This paper presents Chatlaw, an innovative legal assistant utilizing a Mixture-of-Experts (MoE) model and a multi-agent system to enhance the reliability and accuracy of AI-driven legal services. By integrating knowledge graphs with artificial screening, we construct a high-quality legal dataset to train the MoE model. This model utilizes different experts to address various legal issues, optimizing the accuracy of legal responses. Additionally, Standardized Operating Procedures (SOP), modeled after real law firm workflows, significantly reduce errors and hallucinations in legal services. Our MoE model outperforms GPT-4 in the Lawbench and Unified Qualification Exam for Legal Professionals by 7.73% in accuracy and 11 points, respectively, and also surpasses other models in multiple dimensions during real-case consultations, demonstrating our robust capability for legal consultation.
翻译:暂无翻译