We study the Riemannian Langevin Algorithm for the problem of sampling from a distribution with density $\nu$ with respect to the natural measure on a manifold with metric $g$. We assume that the target density satisfies a log-Sobolev inequality with respect to the metric and prove that the manifold generalization of the Unadjusted Langevin Algorithm converges rapidly to $\nu$ for Hessian manifolds. This allows us to reduce the problem of sampling non-smooth (constrained) densities in ${\bf R}^n$ to sampling smooth densities over appropriate manifolds, while needing access only to the gradient of the log-density, and this, in turn, to sampling from the natural Brownian motion on the manifold. Our main analytic tools are (1) an extension of self-concordance to manifolds, and (2) a stochastic approach to bounding smoothness on manifolds. A special case of our approach is sampling isoperimetric densities restricted to polytopes by using the metric defined by the logarithmic barrier.
翻译:我们研究了Riemannian Langevin Algorithm 的抽样问题,从密度为$-nu$的分布上采集有关方块的自然测量数据。我们假设目标密度满足了测量值的日志-Sobolev不平等,并证明未调整的Langevin Algorithm 的多重概括化对于赫森方块来说迅速达到$-nu$。这使我们能够减少非湿性(受限制的)密度问题,用$_bf R ⁇ n 取样有关方块的平稳密度,同时只需要访问日志密度的梯度,而这反过来又需要从天然的Brown运动中取样。我们的主要分析工具是:(1) 将自相兼容性扩展至多方块,(2) 将光度绑在多方块上的方法。我们的方法的一个特殊实例是,取样是光度密度限于多方块,通过使用对数屏屏定的测量尺度。