We have implemented fast Fourier transforms for one, two, and three-dimensional arrays on the Cerebras CS-2, a system whose memory and processing elements reside on a single silicon wafer. The wafer-scale engine (WSE) encompasses a two-dimensional mesh of roughly 850,000 processing elements (PEs) with fast local memory and equally fast nearest-neighbor interconnections. Our wafer-scale FFT (wsFFT) parallelizes a $n^3$ problem with up to $n^2$ PEs. At this point a PE processes only a single vector of the 3D domain (known as a pencil) per superstep, where each of the three supersteps performs FFT along one of the three axes of the input array. Between supersteps, wsFFT redistributes (transposes) the data to bring all elements of each one-dimensional pencil being transformed into the memory of a single PE. Each redistribution causes an all-to-all communication along one of the mesh dimensions. Given the level of parallelism, the size of the messages transmitted between pairs of PEs can be as small as a single word. In theory, a mesh is not ideal for all-to-all communication due to its limited bisection bandwidth. However, the mesh interconnecting PEs on the WSE lies entirely on-wafer and achieves nearly peak bandwidth even with tiny messages. This high efficiency on fine-grain communication allow wsFFT to achieve unprecedented levels of parallelism and performance. We analyse in detail computation and communication time, as well as the weak and strong scaling, using both FP16 and FP32 precision. With 32-bit arithmetic on the CS-2, we achieve 959 microseconds for 3D FFT of a $512^3$ complex input array using a 512x512 subgrid of the on-wafer PEs. This is the largest ever parallelization for this problem size and the first implementation that breaks the millisecond barrier.


翻译:我们在Cerebras CS-2 上实施了快速的 Fleier 变换 Fleier, 1, 2 和 3 维格阵列, 该系统的内存和处理元素都位于一个单硅丝网。 wafer 级引擎( WSE) 包含一个大约850 000 个处理元件( PES) 的二维网格。 在超脚栏之间, WsFFT 的再分配( 转换) 数据可以将每个一维铅笔的所有元素转换成一个 PE 的记忆。 每次再分配会引发一个高达$n2$PE 的峰值问题。 在目前这个点, 3D 域域( 称为铅笔) 的单个矢量和处理元盘的单个矢量, 3D 域域域( 被称为铅笔) 的单个矢量矢量矢量的矢量的矢量, 三个超脚步列的运行FFFFFT 的大小 。 在超脚列之间, 使用一维格的电路路段之间, 使用双向我方FIFIFT 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员