Model-based meta-reinforcement learning (RL) methods have recently been shown to be a promising approach to improving the sample efficiency of RL in multi-task settings. However, the theoretical understanding of those methods is yet to be established, and there is currently no theoretical guarantee of their performance in a real-world environment. In this paper, we analyze the performance guarantee of model-based meta-RL methods by extending the theorems proposed by Janner et al. (2019). On the basis of our theoretical results, we propose Meta-Model-Based Meta-Policy Optimization (M3PO), a model-based meta-RL method with a performance guarantee. We demonstrate that M3PO outperforms existing meta-RL methods in continuous-control benchmarks.


翻译:以模型为基础的元加强学习方法(RL)最近被证明是提高多任务环境中RL抽样效率的一个很有希望的方法,然而,对这些方法的理论理解尚有待确定,目前尚无法在理论上保证其在现实环境中的表现。在本文件中,我们通过扩展Janner等人(2019年)提出的理论理论,分析以模型为基础的元加强学习方法的绩效保障。根据我们的理论结果,我们提议采用Meta-Model-Based Meta-Policimization(M3PO),这是一种以模型为基础的元加强方法,并附有绩效保证。我们证明M3PO在持续控制基准中优于现有的元-RL方法。

2
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年12月3日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
9+阅读 · 2019年4月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员