Neural keyphrase generation models have recently attracted much interest due to their ability to output absent keyphrases, that is, keyphrases that do not appear in the source text. In this paper, we discuss the usefulness of absent keyphrases from an Information Retrieval (IR) perspective, and show that the commonly drawn distinction between present and absent keyphrases is not made explicit enough. We introduce a finer-grained categorization scheme that sheds more light on the impact of absent keyphrases on scientific document retrieval. Under this scheme, we find that only a fraction (around 20%) of the words that make up keyphrases actually serves as document expansion, but that this small fraction of words is behind much of the gains observed in retrieval effectiveness. We also discuss how the proposed scheme can offer a new angle to evaluate the output of neural keyphrase generation models.


翻译:神经关键词生成模型最近引起了很大的兴趣, 因为它们能够输出缺席关键词句, 也就是说, 关键词句没有出现在源文本中 。 在本文中, 我们讨论信息检索( IR) 角度的缺失关键词句是否有用, 并表明当前关键词句和不存在的关键词生成模型之间通常的区分不够明确。 我们引入了一个细微的分类方案, 更清楚地说明缺失关键词句对科学文档检索的影响 。 在这个方案下, 我们发现, 构成关键词句的单词中只有一小部分( 大约 20 % ) 实际起到文档扩展的作用, 但这一小部分的单词却落后于检索有效性所观察到的大部分收益。 我们还讨论了拟议方案如何提供一个新的角度来评价神经关键词生成模型的输出。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
医疗健康领域的短文本理解
专知会员服务
32+阅读 · 2021年1月2日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
16+阅读 · 2021年1月27日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Arxiv
3+阅读 · 2018年3月21日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员