In this paper, we propose a novel sparse recovery method based on the generalized error function. Both the theoretical analysis and the practical algorithms are presented. Numerical experiments are conducted to demonstrate the advantageous performance of the proposed approach over the state-of-the-art sparse recovery methods. Its practical application in magnetic resonance imaging (MRI) reconstruction is studied as well.


翻译:在本文中,我们基于普遍误差功能提出了一种新的稀有回收方法。 提出了理论分析和实际算法。 进行了数值实验,以证明拟议方法相对于最先进的稀有恢复方法的有利性。 也研究了其在磁共振成像(MRI)重建中的实际应用。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
12+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Model-based clustering of partial records
Arxiv
0+阅读 · 2021年7月19日
Arxiv
0+阅读 · 2021年7月14日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
12+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员