The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.
翻译:现有的录像异常现象探测方法大多使用含有可识别面部和外观特征的视频。使用可识别面部的视频引起隐私问题,特别是在医院或社区环境中使用。基于外观的特征还可以对像素噪音具有敏感性,对异常现象探测方法进行压力,以模拟背景变化,使异常现象探测方法难以侧重于人类在前景下的行动。视频中描述人类动作的骨架形式的结构信息是隐私保护,可以克服外观特征造成的一些问题。在本文件中,我们利用从视频中提取的骨架对隐私保护深层学习异常现象探测方法进行了调查。我们根据各种学习方法对算法进行了新的分类。我们的结论是,基于骨骼的异常现象探测方法可以成为视频异常现象探测的一种可行的隐私保护替代方法。最后,我们确定了主要的公开研究问题,并提供了解决它们的指导方针。