An integration of distributionally robust risk allocation into sampling-based motion planning algorithms for robots operating in uncertain environments is proposed. We perform non-uniform risk allocation by decomposing the distributionally robust joint risk constraints defined over the entire planning horizon into individual risk constraints given the total risk budget. Specifically, the deterministic tightening defined using the individual risk constraints is leveraged to define our proposed exact risk allocation procedure. Our idea of embedding the risk allocation technique into sampling based motion planning algorithms realises guaranteed conservative, yet increasingly more risk feasible trajectories for efficient state space exploration.
翻译:建议将分配上稳健的风险分配纳入在不确定环境中操作的机器人的基于抽样的动态规划算法中。我们通过将整个规划前景中界定的、分布上稳健的联合风险限制分解为总体风险预算下的个人风险限制,从而进行不统一的风险分配。具体地说,利用使用个人风险限制的确定式紧缩来确定我们拟议的确切风险分配程序。我们关于将风险分配技术纳入基于抽样的基于抽样的动作规划算法的想法实现了有保障的保守,但为高效的国家空间探索而实现的可行轨道风险越来越大。