This article considers the parametric estimation of $Pr(X<Y<Z)$ and its generalizations based on several well-known one-parameter and two-parameter continuous distributions. It is shown that for some one-parameter distributions and when there is a common known parameter in some two-parameter distributions, the uniformly minimum variance unbiased estimator can be expressed as a linear combination of the Appell hypergeometric function of the first type, $F_{1}$ and the hypergeometric functions $_{2}F_{1}$ and $_{3}F_{2}.$ The Bayes estimator based on conjugate gamma priors and Jefferys' non-informative priors under the squared error loss function is also given as a linear combination of $_{2}F_{1}$ and $F_{1}.$ Alternatively, a convergent infinite series form of the Bayes estimator involving the $F_{1}$ function is also proposed. In model generalizations and extensions, it is further shown that the UMVUE can be expressed as a linear combination of a Lauricella series, $F_{D}^{(n)},$ and the generalized hypergeometric function, $_{p}F_{q},$ which are generalizations of $F_{1}$ and $_{2}F_{1}$ respectively. The generalized closed-form Bayes estimator is also given as a convergent infinite series involving $F_{D}^{(n)}.$ To gauge the performances of the UMVUE and the closed-form Bayes estimator for $P$ against other well-known estimators, maximum likelihood estimates, Lindley approximation estimates and Markov Chain Monte Carlo estimates for $P$ are also computed. Additionally, asymptotic confidence intervals and Bayesian highest probability density credible intervals are also constructed.
翻译:本文章根据几个众所周知的单参数和两个参数连续分布法,考虑$Pr(X<Y ⁇ )$的参数估计及其基于若干著名的一参数和两个参数连续分布法的概数。 显示对于某些单参数分布法和在某些两参数分布法下存在一个共同已知参数时, 统一的最低差异不偏差估计值可以表示为Appell 一级超几何函数的线性组合, $F%1} 美元和超地基函数的超地平方差估计值 $2} F%1} 美元和 3}F%} 。 在模型化和扩展中,基于等离子伽马数前和杰弗里的非强化前言的贝斯估计法则表示为 $2F*1} 美元和 美元最高地基数的混合体数。 在模型化和扩展中, 也进一步显示, 以平面平面的平面货币- 美元 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 和 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 和 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 和 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币- 货币-