Graph convolutional networks (GCNs) can successfully learn the graph signal representation by graph convolution. The graph convolution depends on the graph filter, which contains the topological dependency of data and propagates data features. However, the estimation errors in the propagation matrix (e.g., the adjacency matrix) can have a significant impact on graph filters and GCNs. In this paper, we study the effect of a probabilistic graph error model on the performance of the GCNs. We prove that the adjacency matrix under the error model is bounded by a function of graph size and error probability. We further analytically specify the upper bound of a normalized adjacency matrix with self-loop added. Finally, we illustrate the error bounds by running experiments on a synthetic dataset and study the sensitivity of a simple GCN under this probabilistic error model on accuracy.
翻译:图形共变网络(GCNs) 能够成功地通过图形共变来学习图形信号表示。 图形共变取决于图形过滤器, 该过滤器包含数据的地形依赖性并传播数据特征。 然而, 传播矩阵( 如相邻矩阵) 中的估算错误可能对图形过滤器和GCNs产生重大影响。 在本文中, 我们研究一个概率图形错误模型对GCNs性能的影响。 我们证明错误模型下的相近矩阵受图形大小和误差概率的函数的约束。 我们进一步分析指定一个自loop加的正常对称矩阵的上限。 最后, 我们通过在合成数据集上进行实验来说明错误的界限, 并研究该概率错误模型下的简单GCN对精确度的敏感度。