Classical algorithms are often not effective for solving nonconvex optimization problems where local minima are separated by high barriers. In this paper, we explore possible quantum speedups for nonconvex optimization by leveraging the global effect of quantum tunneling. Specifically, we introduce a quantum algorithm termed the quantum tunneling walk (QTW) and apply it to nonconvex problems where local minima are approximately global minima. We show that QTW achieves quantum speedup over classical stochastic gradient descents (SGD) when the barriers between different local minima are high but thin and the minima are flat. Based on this observation, we construct a specific double-well landscape, where classical algorithms cannot efficiently hit one target well knowing the other well but QTW can when given proper initial states near the known well. Finally, we corroborate our findings with numerical experiments.
翻译:古典算法通常无法有效解决本地微粒被高屏障隔开的非混凝土优化问题。 在本文中, 我们通过利用量子隧道的全球效果, 探索可能的非混凝土优化的量子加速。 具体地说, 我们引入了一种量子算法, 称为量子隧道行走( QTW), 并将其应用到本地微粒约为全球迷你的地方的非混凝土问题。 我们显示, QTW 在本地不同微型微粒之间的屏障高但薄而微型微粒平坦时, 将量子加速到古典微粒梯底部( SGD) 的量子加速。 我们根据这一观察, 构建了一种特定的双井景观, 古典算法无法有效地击中一个目标, 但是当给已知井附近的初始状态时, QTW 能够有效地击中另一个目标 。 最后, 我们用数字实验来证实我们的调查结果 。