Given an undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, with vertex weights $(w(u))_{u\in\mathcal{V}}$, vertex values $(\alpha(u))_{u\in\mathcal{V}}$, a knapsack size $s$, and a target value $d$, the \vcknapsack problem is to determine if there exists a subset $\mathcal{U}\subseteq\mathcal{V}$ of vertices such that $\mathcal{U}$ forms a vertex cover, $w(\mathcal{U})=\sum_{u\in\mathcal{U}} w(u) \le s$, and $\alpha(\mathcal{U})=\sum_{u\in\mathcal{U}} \alpha(u) \ge d$. In this paper, we closely study the \vcknapsack problem and its variations, such as \vcknapsackbudget, \minimalvcknapsack, and \minimumvcknapsack, for both general graphs and trees. We first prove that the \vcknapsack problem belongs to the complexity class \NPC and then study the complexity of the other variations. We generalize the problem to \setc and \hs versions and design polynomial time $H_g$-factor approximation algorithm for the \setckp problem and d-factor approximation algorithm for \hstp using primal dual method. We further show that \setcks and \hsmb are hard to approximate in polynomial time. Additionally, we develop a fixed parameter tractable algorithm running in time $8^{\mathcal{O}({\rm tw})}\cdot n\cdot {\sf min}\{s,d\}$ where ${\rm tw},s,d,n$ are respectively treewidth of the graph, the size of the knapsack, the target value of the knapsack, and the number of items for the \minimalvcknapsack problem.
翻译:暂无翻译