In this paper, we present strong numerical evidences that the $3$D incompressible axisymmetric Navier-Stokes equations with degenerate diffusion coefficients and smooth initial data of finite energy develop a potential finite time locally self-similar singularity at the origin. The spatial part of the degenerate diffusion coefficient is a smooth function of $r$ and $z$ independent of the solution and vanishes like $O(r^2)+O(z^2)$ near the origin. This potential singularity is induced by a potential singularity of the $3$D Euler equations. An important feature of this potential singularity is that the solution develops a two-scale traveling wave that travels towards the origin. The two-scale feature is characterized by the property that the center of the traveling wave approaches the origin at a slower rate than the rate of the collapse of the singularity. The driving mechanism for this potential singularity is due to two antisymmetric vortex dipoles that generate a strong shearing layer in both the radial and axial velocity fields. Without the viscous regularization, the $3$D Euler equations develop an additional small scale characterizing the thickness of the sharp front. On the other hand, the Navier-Stokes equations with a constant diffusion coefficient regularize the two-scale solution structure and do not develop a finite time singularity for the same initial data. The initial condition is designed in such a way that it generates a positive feedback loop that enforces a strong nonlinear alignment of vortex stretching, leading to a stable locally self-similar blowup at the origin. We perform careful resolution study and asymptotic scaling analysis to provide further support of the potential finite time locally self-similar blowup.
翻译:在本文中,我们展示了强大的数字证据, 3美元D 不可压缩的轴轴反射值 Navier- Stokes 方程式, 其扩散系数下降, 以及有限的能量的平滑初始数据, 形成了一个潜在的有限时间点, 在源头形成一个潜在的局部自差。 下降的传播系数的空间部分是一个平滑的函数, 美元和美元, 与解决方案无关, 并消失在接近源头的O( r) 2+O( z)2美元。 这种潜在奇特性是由3美元D Euler等方程式的潜在异差的一致作用所引发的。 这种潜在奇特性的一个重要特征是, 溶液会形成一个双级的双级的双级旅行波波波波波波, 向源源向源游向源游向源游行。 移动波波中心以较慢的速速速度接近源。 移动波的中位阶中心, 将硬度的直径直径直径直的直径直径直方平方形平面的直径直径直径方形平方形平方形平方形平方形平方形平方形平方形平方正方形平方形平方形平方形平方形平方形平方形平方形平方形平方形平方形平方形, 。