Spanners for metric spaces have been extensively studied, both in general metrics and in restricted classes, perhaps most notably in low-dimensional Euclidean spaces -- due to their numerous applications. Euclidean spanners can be viewed as means of compressing the $\binom{n}{2}$ pairwise distances of a $d$-dimensional Euclidean space into $O(n) = O_{\epsilon,d}(n)$ spanner edges, so that the spanner distances preserve the original distances to within a factor of $1+\epsilon$, for any $\epsilon > 0$. Moreover, one can compute such spanners in optimal $O(n \log n)$ time. Once the spanner has been computed, it serves as a "proxy" overlay network, on which the computation can proceed, which gives rise to huge savings in space and other important quality measures. On the negative side, by working on the spanner rather than the original metric, one loses the key property of being able to efficiently "navigate" between pairs of points. While in the original metric, one can go from any point to any other via a direct edge, it is unclear how to efficiently navigate in the spanner: How can we translate the existence of a "good" path into an efficient algorithm finding it? Moreover, usually by "good" path we mean a path whose weight approximates the original distance between its endpoints -- but a priori the number of edges (or "hops") in the path could be huge. To control the hop-length of paths, one can try to upper bound the spanner's hop-diameter, but naturally bounded hop-diameter spanners are more complex than spanners with unbounded hop-diameter, which might render the algorithmic task of efficiently finding good paths more challenging. The original metric enables us to navigate optimally -- a single hop (for any two points) with the exact distance, but the price is high -- $\Theta(n^2)$ edges. [...]


翻译:对测量空间的双向距离进行了广泛的研究, 无论是在一般的度量上还是在限制的等级上, 也许最显著的是在低维的 Euclidea 空间中, 因为它们有许多应用。 Euclidean 的打手可以被看成是将 $\binom{n ⁇ 2} 美元维度的Euclidean 空间压缩成 $O(n) = O ⁇ epsilon, d}(n) 美元 频度边缘上, 这样, 使光度距离将原始距离维持在 $1 eepsilon 的距离内, 任何美元比远的远。 此外, 一种可以将这样的打手边压缩成 $O (n\ log n) 美元的最佳时间。 一旦计算好了, 它就是一个“ protoxycle” overlay 网络, 它可以提高空间的节省量, 但是其他重要的质量测量。 在负面上, 通过在平线上工作而不是原始的距离上, 一个关键属性从“ navgelgate ral ral rent ral ral ral ral ral rent rent rent ral rent ral ral rent ral ral ral ral ral rup rup rup ral ral be rus a rus a rlus a rus a rent rent rent rus a rus a rent rl rent ral rup r rl d rent a rus a rut a r rl d r r r rl rl rl d r r r r r r r r r r r) r) r) r) r) r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Structure Learning for Directed Trees
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员