This paper presents a nonlinear integrated guidance and control (IGC) approach for flexible leader-follower formation flight of fixed-wing unmanned aerial vehicles (UAVs) while accounting for high-fidelity aerodynamics and thrust dynamics. Unlike conventional leader-follower schemes that fix the follower's position relative to the leader, the follower is steered to maintain range and bearing angles (which is the angle between its velocity vector and its line-of-sight (LOS) with respect to the leader) arbitrarily close to the prescribed values, enabling the follower to maintain formation on a hemispherical region behind the leader. The proposed IGC framework directly maps leader-follower relative range dynamics to throttle commands, and the follower's velocity orientation relative to the LOS to aerodynamic control surface deflections. This enables synergism between guidance and control subsystems. The control design uses a dynamic surface control-based backstepping approach to achieve convergence to the desired formation set, where Lyapunov barrier functions are incorporated to ensure the follower's bearing angle is constrained within specified bounds. Rigorous stability analysis guarantees uniform ultimate boundedness of all error states and strict constraint satisfaction in the presence of aerodynamic nonlinearities. The proposed flexible formation scheme allows the follower to have an orientation mismatch relative to the leader to execute anticipatory reconfiguration by transitioning between the relative positions in the admissible formation set when the leader aggressively maneuvers. The proposed IGC law relies only on relative information and onboard sensors without the information about the leader's maneuver, making it suitable for GPS-denied or non-cooperative scenarios. Finally, we present simulation results to vindicate the effectiveness and robustness of our approach.
翻译:暂无翻译