We present a weight similarity measure method that can quantify the weight similarity of non-convex neural networks. To understand the weight similarity of different trained models, we propose to extract the feature representation from the weights of neural networks. We first normalize the weights of neural networks by introducing a chain normalization rule, which is used for weight representation learning and weight similarity measure. We extend the traditional hypothesis-testing method to a hypothesis-training-testing statistical inference method to validate the hypothesis on the weight similarity of neural networks. With the chain normalization rule and the new statistical inference, we study the weight similarity measure on Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN), and find that the weights of an identical neural network optimized with the Stochastic Gradient Descent (SGD) algorithm converge to a similar local solution in a metric space. The weight similarity measure provides more insight into the local solutions of neural networks. Experiments on several datasets consistently validate the hypothesis of weight similarity measure.
翻译:我们提出了一个重量相似度测量方法,可以量化非凝固神经网络的重量相似性。为了理解不同受过训练的模型的重量相似性,我们提议从神经网络的重量中提取特征代表。我们首先通过引入链条正常化规则,将神经网络的重量正常化,用于体重代表制学习和重量相似度测量。我们将传统的假设测试方法扩大到一种假设-培训测试统计推断方法,以验证神经网络重量相似性的假设。根据链条正常化规则和新的统计推论,我们研究多拉耳 Percepron(MLP)、进动神经网络(CNN)和常态神经网络(RNNN)的重量相似性测量,并发现同一神经网络的重量与Stochatical-梯根(SGD)算法优化,在计量空间与类似的当地解决办法相融合。重量相似度测量方法为神经网络的本地解决方案提供了更深入的洞察。在几个数据集上进行的实验一致地验证了重量相似度测量的假设。