An important challenge in Geometric Modeling is to classify polytopes with rational linear precision. Equivalently, in Algebraic Statistics one is interested in classifying scaled toric varieties, also known as discrete exponential families, for which the maximum likelihood estimator can be written in closed form as a rational function of the data (rational MLE). The toric fiber product (TFP) of statistical models is an operation to iteratively construct new models with rational MLE from lower dimensional ones. In this paper we introduce TFPs to the Geometric Modeling setting to construct polytopes with rational linear precision and give explicit formulae for their blending functions. A special case of the TFP is taking the Cartesian product of two polytopes and their blending functions. The Horn matrix of a statistical model with rational MLE is a key player in both Geometric Modeling and Algebraic Statistics; it proved to be fruitful providing a characterisation of those polytopes having the more restrictive property of strict linear precision. We give an explicit description of the Horn matrix of a TFP.


翻译:几何模型中的一个重要挑战是以合理的线性精确度对多面体进行分类。在代数统计中,人们有意对缩放型品种进行分类,也称为离散指数型家族,其最大可能性估计值可以作为数据的合理功能(合理 MLE)以封闭形式写成。统计模型的托尔纤维产品(TFP)是一种从较低维度的模型中迭接地构建具有合理MLE的新模型的操作。在本文中,我们向几何模型设置引入TFps,以构建具有合理线性精确度的多面体,并为混合功能提供明确的公式。TFP的一个特别案例是将两个多面体及其混合功能的Cartesian产品取下来。理性MLE的统计模型的角矩阵是几何模型和代数统计中的一个关键角色;事实证明,提供那些具有严格线性特征的多面体特征是富有成果的。我们明确地描述了TFP的角矩阵。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
23+阅读 · 2021年10月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员