We present a systematic study of medical-domain interpretability in Large Language Models (LLMs). We study how the LLMs both represent and process medical knowledge through four different interpretability techniques: (1) UMAP projections of intermediate activations, (2) gradient-based saliency with respect to the model weights, (3) layer lesioning/removal and (4) activation patching. We present knowledge maps of five LLMs which show, at a coarse-resolution, where knowledge about patient's ages, medical symptoms, diseases and drugs is stored in the models. In particular for Llama3.3-70B, we find that most medical knowledge is processed in the first half of the model's layers. In addition, we find several interesting phenomena: (i) age is often encoded in a non-linear and sometimes discontinuous manner at intermediate layers in the models, (ii) the disease progression representation is non-monotonic and circular at certain layers of the model, (iii) in Llama3.3-70B, drugs cluster better by medical specialty rather than mechanism of action, especially for Llama3.3-70B and (iv) Gemma3-27B and MedGemma-27B have activations that collapse at intermediate layers but recover by the final layers. These results can guide future research on fine-tuning, un-learning or de-biasing LLMs for medical tasks by suggesting at which layers in the model these techniques should be applied.
翻译:暂无翻译