This paper introduces a new simulation-based inference procedure to model and sample from multi-dimensional probability distributions given access to i.i.d. samples, circumventing usual approaches of explicitly modeling the density function or designing Markov chain Monte Carlo. Motivated by the seminal work of M\'emoli (2011) and Sturm (2012) on distance and isomorphism between metric measure spaces, we propose a new notion called the Reversible Gromov-Monge (RGM) distance and study how RGM can be used to design new transform samplers in order to perform simulation-based inference. Our RGM sampler can also estimate optimal alignments between two heterogenous metric measure spaces $(\mathcal{X}, \mu, c_{\mathcal{X}})$ and $(\mathcal{Y}, \nu, c_{\mathcal{Y}})$ from empirical data sets, with estimated maps that approximately push forward one measure $\mu$ to the other $\nu$, and vice versa. Analytic properties of RGM distance are derived; statistical rate of convergence, representation, and optimization questions regarding the induced sampler are studied. Synthetic and real-world examples showcasing the effectiveness of the RGM sampler are also demonstrated.
翻译:本文引入了一种新的基于模拟的推论程序,用于建模和采样的多维概率分布的模型和样本,以提供i.d.样本,绕过明确模拟密度函数的通常方法或设计Markov链的Monte Carlo。在M\'emoli(2011)和Sturm(2012)关于测量空间之间距离和形态的开创性工作推动下,我们提出了一个新概念,称为可变Gromov-Monge(RGM)距离,并研究如何利用RGM设计新的变异采样器,以进行模拟推断。我们的RGM取样器还可以估计两种异质度测量空间之间的最佳比对齐($(mathcal{X},\mu,cámathal{X})和美元(macal{Y},\nu,cámathcal{Y ⁇ )之间的最佳比对齐。 我们提出的新概念是将估计地图大约推向1度的1美元至1美元,反之。