In this paper, we propose a single-shot instance segmentation method, which is simple, fast and accurate. There are two main challenges for one-stage instance segmentation: object instances differentiation and pixel-wise feature alignment. Accordingly, we decompose the instance segmentation into two parallel subtasks: Local Shape prediction that separates instances even in overlapping conditions, and Global Saliency generation that segments the whole image in a pixel-to-pixel manner. The outputs of the two branches are assembled to form the final instance masks. To realize that, the local shape information is adopted from the representation of object center points. Totally trained from scratch and without any bells and whistles, the proposed CenterMask achieves 34.5 mask AP with a speed of 12.3 fps, using a single-model with single-scale training/testing on the challenging COCO dataset. The accuracy is higher than all other one-stage instance segmentation methods except the 5 times slower TensorMask, which shows the effectiveness of CenterMask. Besides, our method can be easily embedded to other one-stage object detectors such as FCOS and performs well, showing the generation of CenterMask.
翻译:在本文中,我们提出一个简单、快速和准确的单发实例分解方法。 单发实例分解方法。 单发实例分解有两个主要挑战: 对象实例分解和像素特征对齐。 因此, 我们将实例分解成两个平行的子任务: 本地形状预测, 即使在重叠的条件下, 也会将事件分解为不同的情况, 以及全球色化生成, 以像素到像素的方式将整个图像分解为像素到像素的方式。 两个分支的输出组合成最后的例子掩码 。 要认识到本地形状信息是从对象中心点的表示中采用的。 完全从零到没有钟和哨子训练, 拟议的中心Mask 实现了34.5 个面罩, 速度为12.3 fps, 使用单级培训/ 测试具有挑战性的COCOCO数据集的单一模型。 准确度高于所有其他一阶段分解方法。 除了显示 CentMask 5倍慢的图案解, 显示 CentreMask 的效果。 此外, 我们的方法可以很容易被嵌入其他一级物体探测器, 如 FCOS和表现中心。