Given a graph with edges colored red or blue and an integer $k$, the exact perfect matching problem asks if there exists a perfect matching with exactly $k$ red edges. There exists a randomized polylogarithmic-time parallel algorithm to solve this problem, dating back to the eighties, but no deterministic polynomial-time algorithm is known, even for bipartite graphs. In this paper we show that there is no sub-exponential sized linear program that can describe the convex hull of exact matchings in bipartite graphs. In fact, we prove something stronger, that there is no sub-exponential sized linear program to describe the convex hull of perfect matchings with an odd number of red edges.
翻译:以红色或蓝色边缘和整数美元值的图表为例, 完全匹配的问题在于是否有一个完全匹配的红边缘。 存在一个随机化的多元数时平行算法可以解决这个问题, 追溯到八十年代, 但即使对于两边的图表, 也不存在确定性多数值算法。 在本文中, 我们显示没有亚化的量子线性程序可以描述双边图中精确匹配的锥形体。 事实上, 我们证明一些更强的东西, 没有亚化化的大小线性程序可以描述与奇数红色边缘匹配的圆形体。