Immersiveness is the main characteristic of Virtual Reality(VR) applications. Precise integration between hardware design and software are necessary for providing a seamless virtual experience. Allowing the user to navigate the VR scene using locomotion techniques is crucial for making such experiences `immersive'. Locomotion in VR acts as a motion tracking unit for the user and simulates their movement in the virtual scene. These movements are commonly rotational, axial or translational based on the Degree-of-Freedom (DOF) of the application. To support effective locomotion, one of the primary challenges for VR practitioners is to transform their hardware from 3-DOF to 6-DOF or vice versa. We conducted a systematic review on different motion tracking methods employed in the Head-Mounted-Devices (HMD) to understand such hardware transformation. Our review discusses the fundamental aspects of the hardware-based transformation of HMDs to conduct virtual locomotion. Our observations led us to formulate a taxonomy of the tracking methods based on system design, which can eventually be used for the hardware transformation of HMDs. Our study also captures different metrics that VR practitioners use to evaluate the hardware based on the context, performance, and significance of its usage.
翻译:暂无翻译