Determining the sensitivity of the posterior to perturbations of the prior and likelihood is an important part of the Bayesian workflow. We introduce a practical and computationally efficient sensitivity analysis approach using importance sampling to estimate properties of posteriors resulting from power-scaling the prior or likelihood. On this basis, we suggest a diagnostic that can indicate the presence of prior-data conflict or likelihood noninformativity and discuss limitations to the power-scaling approach. The approach can be easily included in Bayesian workflows with minimal effort by the model builder and we present an implementation in our new R package \texttt{priorsense}. We further demonstrate the workflow on case studies of real data using models varying in complexity from simple linear models to Gaussian process models.
翻译:确定后继者对扰动先前和可能性的敏感度是Bayesian工作流程的一个重要部分。我们采用了实用和计算高效的敏感度分析方法,使用重要取样来估计前一级或可能性的功率缩放所产生的后继者属性。在此基础上,我们建议进行诊断,可以表明存在先前数据冲突或非信息性的可能性,并讨论对权力缩放方法的限制。该方法可以很容易地纳入Bayesian工作流程,而模型建设者只需作出最低限度的努力,我们将在我们新的R包件\ textt{priorsense}中介绍执行情况。我们进一步展示了使用从简单的线性模型到高西亚进程模型等复杂模型的实际数据案例研究的工作流程。