Many problems in science and engineering involve optimizing an expensive black-box function over a high-dimensional space. For such black-box optimization (BBO) problems, we typically assume a small budget for online function evaluations, but also often have access to a fixed, offline dataset for pretraining. Prior approaches seek to utilize the offline data to approximate the function or its inverse but are not sufficiently accurate far from the data distribution. We propose Black-box Optimization Transformer (BOOMER), a generative framework for pretraining black-box optimizers using offline datasets. In BOOMER, we train an autoregressive model to imitate trajectory runs of implicit black-box function optimizers. Since these trajectories are unavailable by default, we develop a simple randomized heuristic to synthesize trajectories by sorting random points from offline data. We show theoretically that this heuristic induces trajectories that mimic transitions from diverse low-fidelity (exploration) to high-fidelity (exploitation) samples. Further, we introduce mechanisms to control the rate at which a trajectory transitions from exploration to exploitation, and use it to generalize outside the offline data at test-time. Empirically, we instantiate BOOMER using a casually masked Transformer and evaluate it on Design-Bench, where we rank the best on average, outperforming state-of-the-art baselines.
翻译:科学和工程的许多问题都涉及在高维空间优化昂贵的黑盒功能。 对于这类黑盒优化(BBOBO)问题,我们通常假设用于在线功能评估的预算很小,但我们通常会假设用于在线功能评估的预算很小,但往往可以使用固定的离线数据集进行预培训。 先前的方法是利用离线数据来估计功能或其反向,但并不十分准确,但与数据分布相去甚远。 我们提议黑盒优化变异器(BOOMOER),这是使用离线数据集对黑盒优化预培训前的变异器进行感化的框架。 在BOOMER中,我们训练一种自动反向模型,以模拟隐含黑盒功能优化的轨迹运行。由于这些轨迹无法默认,我们开发了一个简单的随机超自然化的轨迹,通过从离线数据的随机点来合成轨迹。 我们从理论上显示,这种超常态诱导引线诱导的轨从不同的低纤维化(Exlocationation)到高纤维化(Deutation)到高纤维化(deal)抽样。 此外,我们引入了一种自动的轨- devial- devial-destreval exal exideal extraction- detraction expetraction atraction) expecustrution,然后我们使用了外部利用了一种机制,然后在外的自我探索。