In this paper, we investigate the problems that Convolutional Neural Networks (CNN)-based pose estimators have with symmetric objects. We considered the value of the CNN's output representation when continuously rotating the object and found that it has to form a closed loop after each step of symmetry. Otherwise, the CNN (which is itself a continuous function) has to replicate an uncontinuous function. On a 1-DOF toy example we show that commonly used representations do not fulfill this demand and analyze the problems caused thereby. In particular, we find that the popular min-over-symmetries approach for creating a symmetry-aware loss tends not to work well with gradient-based optimization, i.e. deep learning. We propose a representation called "closed symmetry loop" (csl) from these insights, where the angle of relevant vectors is multiplied by the symmetry order and then generalize it to 6-DOF. The representation extends our algorithm from [Richter-Klug, ICVS, 2019] including a method to disambiguate symmetric equivalents during the final pose estimation. The algorithm handles continuous rotational symmetry (e.g. a bottle) and discrete rotational symmetry (e.g. a 4-fold symmetric box). It is evaluated on the T-LESS dataset, where it reaches state-of-the-art for unrefining RGB-based methods.
翻译:在本文中, 我们调查了基于 革命神经网络( CNN) 的测算器与对称天体存在的问题。 我们考虑了CNN在连续旋转天体时输出表示值的价值, 发现它必须在对称的每一步后形成一个封闭循环。 否则, CNN( 它本身就是一个连续函数) 必须复制一个互不相干的函数 。 在 1 - DOF 玩具的例子中, 我们显示常用的表达方式无法满足此需求, 并分析由此造成的问题 。 特别是, 我们发现, 创建对称天体损失的流行的对称性表示法, 与基于渐渐变的优化( 深的学习) 不同, 我们从这些洞察中提出一个称为“ 封闭的对称环( csloveyal ) 的表示法, 相关矢量的角乘以对称顺序, 然后将其概括到 6 - DOF。 表示方式扩大了我们的算法, 从 [ Richter- Klug, ICVS, 2019) 中, 包括一个不易偏差的对称方法,, 直径对称的算方法, 直径对等值数据。