This paper proposes various new analysis techniques for Bayes networks in which conditional probability tables (CPTs) may contain symbolic variables. The key idea is to exploit scalable and powerful techniques for synthesis problems in parametric Markov chains. Our techniques are applicable to arbitrarily many, possibly dependent parameters that may occur in various CPTs. This lifts the severe restrictions on parameters, e.g., by restricting the number of parametrized CPTs to one or two, or by avoiding parameter dependencies between several CPTs, in existing works for parametric Bayes networks (pBNs). We describe how our techniques can be used for various pBN synthesis problems studied in the literature such as computing sensitivity functions (and values), simple and difference parameter tuning, ratio parameter tuning, and minimal change tuning. Experiments on several benchmarks show that our prototypical tool built on top of the probabilistic model checker Storm can handle several hundreds of parameters.
翻译:本文为贝叶斯网络提出了各种新的分析技术,其中有条件概率表(CPTs)可能包含象征性变量。关键的想法是利用可扩缩和强大的技术来综合参数马可夫链的合成问题。我们的技术适用于各种CPT中可能出现的许多任意的、可能依赖的参数。这解除了对参数的严格限制,例如,将参数的参数限制在一个或两个,或避免若干CPTs之间的参数依赖性,在参数贝兹网络的现有工作(pBNs)中。我们描述了如何将我们的技术用于处理在文献中研究的各种pBN合成问题,例如计算敏感功能(和价值)、简单和差异参数调整、比率参数调整和微小变化调整。几个基准的实验表明,在概率模型检查器暴风中,我们建立起来的原型工具可以处理数百个参数。