We propose a "small-uniform" statistic for the inference of the functional PCA estimator in a functional linear regression model. The literature has shown two extreme behaviors: on the one hand, the FPCA estimator does not converge in distribution in its norm topology; but on the other hand, the FPCA estimator does have a pointwise asymptotic normal distribution. Our statistic takes a middle ground between these two extremes: after a suitable rate normalization, our small-uniform statistic is constructed as the maximizer of a fractional programming problem of the FPCA estimator over a finite-dimensional subspace, and whose dimensions will grow with sample size. We show the rate for which our scalar statistic converges in probability to the supremum of a Gaussian process. The small-uniform statistic has applications in hypothesis testing. Simulations show our statistic has comparable to slightly better power properties for hypothesis testing than the two statistics of Cardot, Ferraty, Mas and Sarda (2003).
翻译:我们提出了一个“ 小型统一” 统计, 用于计算功能性线性回归模型中功能性五氯苯甲醚估计值的推断值。 文献显示了两种极端的行为: 一方面, FPCA 估计值在其常规表层分布上并不趋同; 另一方面, FPCA 估计值确实有一个点性无症状的正常分布。 我们的统计在这两个极端之间占据了一个中间点: 在适当比例正常化之后, 我们的小统一统计被构建为FPCA 测量值在有限维次空间上的一个小编程问题的最大化者, 其尺寸将随着样本大小的增长而增长。 我们展示了我们标度统计值在概率上与高斯进程的顶点相融合的速度。 小型统一统计在假设测试中具有应用性。 模拟显示我们的统计比卡多、 费拉蒂、 马斯 和 Sarda (2003年) 的两种统计中, 假设测试的功率比略得多。