Bayesian inference and uncertainty quantification in a general class of non-linear inverse regression models is considered. Analytic conditions on the regression model $\{\mathscr G(\theta): \theta \in \Theta\}$ and on Gaussian process priors for $\theta$ are provided such that semi-parametrically efficient inference is possible for a large class of linear functionals of $\theta$. A general semi-parametric Bernstein-von Mises theorem is proved that shows that the (non-Gaussian) posterior distributions are approximated by certain Gaussian measures centred at the posterior mean. As a consequence posterior-based credible sets are valid and optimal from a frequentist point of view. The theory is illustrated with two applications with PDEs that arise in non-linear tomography problems: an elliptic inverse problem for a Schr\"odinger equation, and inversion of non-Abelian X-ray transforms. New analytical techniques are deployed to show that the relevant Fisher information operators are invertible between suitable function spaces
翻译:在非线性反反回归模型的一般类别中,考虑贝叶斯推论和不确定性的量化。在回归模型上的分析条件 $ ⁇ mathscr G (\theta):\theta\\\\$$和Gaussian进程前期$$\theta$的计算结果是,对于一大类的线性功能($\theta$)来说,半参数有效推论是可能的。一个普通半参数 Bernstein-von Mises 理论得到证明,表明(非Gaussian)后方分布为以后方值为中心的某些高山措施的近似值。因此,从经常的角度看,基于后方的可靠数据集是有效和最佳的。该理论用在非线性图象学问题中出现的PDE的两个应用来说明:Schr\"ocr\"ober方程的逆向问题,以及非Abelian X-ray变换的反向。新的分析技术被部署,以显示有关空间操作者在适当的空间上可垂直运行。